Bone and Inflammation

George E. Fragoulis, MD

Metsovo 2012
Outline

- Physiology of bone turn-over
 - RANK-RANKL-OPG System
 - Wnt System
- Pathophysiology of Bone in Inflammation
 - Inflammation and bone destruction
 - Role of specific cytokines / Th17
- Disease Paradigms
 - RA
 - Spondyloarthropathies
 - Psoriatic Arthritis
 - Systemic Lupus Erythematosus
Osteoclasts (OCL) are multinucleated cells formed by fusion of mononuclear precursors in the monocyte/macrophage lineage.

Osteoclastogenesis is directed by Osteoblasts (OBL) & bone stromal cells.
RANK-RANKL-OPG System

- Major role in the bone turnover
 - Mice with a disruption in either RANK or RANKL
 - complete lack of osteoclasts
 - severe osteopetrosis
 - defective tooth eruption
 - mice lacking OPG
 - ↑ numbers and activities of osteoclasts
 - osteoporosis

- Regulator between T & DCs
 - RANKL is upregulated on T cells upon activation
 - Can drive a RANKL osteoclastogenesis & bone loss
RANK-RANKL-OPG System

Pathway

- Binding of RANKL to RANK
 - Signaling cascades that control lineage commitment and activation of osteoclasts
RANK-RANKL-OPG System
Pathway

Negative & Positive Regulators
Wnt Pathway
Bone formation

- **Mechanism**
 - OBL differentiation & activity
 - ↑ growth rate of OBL & inhibiting their apoptosis
 - Inhibiting osteoclastogenesis

- **Wnt proteins**
 - Secreted growth factors proteins (regulate key procedures)
 - 4 signaling pathways
 - Wnt/b-catenin pathway is the most important
 - Inhibitors
 - DKK-1: binds LRP5/6 + Kremen (LRP’s internalized)
 - SOST, produced by osteocytes: binds LRP5
Wnt Pathway

- **DKK-1 experimental models (mice)**
 - ↑: osteopenia, limb deformities, hairlessness, ↓ No of OBL
 - ↓: ↑ No of OBL, ↑ bone formation rate

- **LRP5**
 - LRP5 -/- mice
 - ↓ bone mass
 - Mice with gain of function mutation (G171V)
 - High bone mass phenotype

- **SFRPs (Secreted frizzled-related protein)**
 - able to bind Wnt proteins and prevents them from binding the Fz receptors
 - SFRP1 -/- mice
 - High trabecular bone density
 - In co-cultures of murine osteoblasts with spleen cells
 - Anti-sFRP-1: ↑ osteoclast formation
 - Recombinant sFRP-1: inhibited osteoclast formation
 - Bind and inactivate RANKL
 - thus SFRPs not only act blocking WNT but also via RANKL!
Possible interplay between
RANK/RANKL/OPG & Wnt Systems

- B-catenin regulate OPG expression in OBL
- Cocultures of mouse mononuclear spleen cells & OBL
 - Treated with
 - Wnt3a (activation) or Lithium (indirect activation)
 - Inhibition of formation of OCL
 - \(\downarrow \) RANKL (mRNA, protein)
Inflammation and bone destruction

IL-4
IL-12
IL-18
IFN-β
TGF-b

Promote bone resorption

Inhibit osteoclastogenesis
↑ OPG/RANKL
Inflammation and bone destruction

TNF-a

- Inhibits differentiation of mature OBL
- Stimulates Dkk-1
- Induces apoptosis of OBL, OBL precursors, chondrocytes

- ↑ expression of RANKL
 - Stromal cells
 - T lymphocytes
 - B lymphocytes
 - endothelial cells
- ↑ RANK
- ↑ OCL precursor population
 - mobilize CD11bhigh osteoclast from the bone marrow into the circulation
- ↑ OCL differentiation and activation
 - Along with IL-1 and RANKL
- ↑ M-CSF production
 - stromal cells

Mice deficient in TNFα: Some of them develop bone erosions (indicating that there are TNF independent pathways leading to erosions)
Inflammation and bone destruction

other cytokines

- **IL-1**
 - Direct actions
 - OCL precursors \rightarrow OCL
 - Survival & function of OCL
 - act synergistically with TNFa
 - Mice lacking IL-1R1 treated with TNF
 - \downarrow osteoclastogenesis

- **IL-6**
 - Mechanism
 - IL-6 $+$ IL-6sR bind OBL \rightarrow \uparrowPGE2 \rightarrow \uparrow RANKL & \downarrow OPG
 - Mice deficient IL-6: protected from CIA & AIA joint inflammation and tissue destruction but not from STA model

- **OSM**
 - \uparrowOsteoclastogenesis
 - \uparrowRANKL
 - Intrarticular injections of Ad-OSM: arthritis (pannus, destruction)
 - In CIA & AIA: neutralizing ab \rightarrow \downarrow inflammation & bone loss
Inflammation and bone destruction
other cytokines

- **IL-7**
 - Stimulating differentiation of OCL precursors → OCL
 - ↑ RANKL in T cells

- **PTHrP**
 - Induced by TNFα and IL-1
 - Acts synergistically with TNFα and IL-1
 - ↑ RANKL in OBL
 - ↓ OPG
 - Induces secretion of IL-6
 - CIA: ↑ in joint
 - SCW model: block
 - ↓ No of OCL
 - ↓ bone erosions
 - Inflammation: unaltered
Inflammation and bone destruction

Uncoupling inflammation from bone resorption

- OCL is the major player
 - Inflammatory arthritis can be present in mouse models lacking OCLs (i.e. cfos -/- / hTNFtg, RANKL KO) despite the complete loss of bone erosions
 - No altering in cellular populations
 - MMPs
 - No influence on TNF
Inflammation and bone destruction
Uncoupling inflammation from bone resorption

- Tx with OPG Fc in TNFtg mice
 - ↓ OCL No
 - ↓ focal erosion
 - Ongoing inflammation

- tgTNF mice treated with anti-Dkk-1: inhibition of bone erosions without altering inflammation attributed to ↓ OCL

Thus: TNF and other inflammatory cytokines enhance bone erosion but can’t lead alone to bone erosions
IL-17: a novel regulator

- A combination of TGF-b, IL-6, IL-1 and IL-23 is required for Th17 differentiation and IL-17 production
- Th17 cells
 - Express ↑RANKL
- Cartilage breakdown
 - Synergistic action with TNFa
- Osteoclastogenesis
 - Cocultures of OCL precursors with either RANKL, MCSF or OBL
 - Osteoclastogenesis was ↑ in the presence of IL-17
 - Probably via ↑RANKL in OBL
- AIA/CIA: In vivo blockade
 - ↓ joint destruction
 - ↓ IL-6
 - ↓ bone erosions
 - ↑ VEGF
Disease Paradigms

- **Inflammatory conditions**
 - Bone loss (e.g. Rheumatoid arthritis)
 - Bone loss & bone formation (e.g. Spondylarthritis)

- **Type of bone loss**
 - Generalized (osteopenia)
 - Focal (bone erosion)
 - Local (periarticular osteopenia)

- **Type of bone formation**
 - Sclerosis
 - Osteophyte formation
 - Calcification of soft tissues
Rheumatoid Arthritis

- Proinflammatory mediators in RA joints → production of OCL precursors → in bone/pannus → differentiating to OCL (under RANKL)

- Total hip BMD correlated with erosion scores
 - Stronger among patients with early RA
 - After adjustment disappeared
 - Relationship between focal erosions and generalized osteoporosis is complicated and modified by many factors
Rheumatoid Arthritis

Synovial tissue

- IL-17
 - ↑ spnt of synovial tissue
 - ↑ IL-6, IL-1, TNFa
 - By synoviocytes
 - Collagen destruction
 - Inhibition of collagen synthesis
- ↑ MMP-1
- ↑ RANKL
 - Synoviocytes
 - OBL
- ↓ OPG
 - OBL

↑ RANKL
- OBL
- T cells
- Fibroblasts

↓ OPG

IL-7
- MF
- Fibroblasts
- Endothelial cells

PTHrP
- Synovial lining cells
- Fibroblast like cells
Rheumatoid Arthritis

- **Synovial fluid**
 - ↑ IL-17
 - ↓ OPG
 - ↑ IL-6 & sIL-6R
 - Correlation with radiographic damage
 - ↑ OSM
 - ↑ IL-7
 - ↑ PTHrP

- **Serum**
 - ↑ Dkk-1
 - Association with radiographic progression
 - After anti-TNF Tx: ↓
 - ↑ IL-6 & sIL-6R
Ankylosing Spondylarthritis

- Osteopenia
 - Especially in the spine
 - Effective Tx with anti-TNFα

- New bone formation
 - Not effective Tx with anti-TNFα
 - Possibly due to overactive Wnt system
Ankylosing Spondylarthritis

- Osteopenia
 - Associated with
 - ↓ OPG
 - ↑ bone absorption markers (indicating role for RANKL)
Ankylosing Spondylarthritis
New bone formation

- Dkk-1 serum levels
 - ↑ in AS vs. Healthy, RA, PsA
 - However: ↓ Dkk-1 binding to LRP6
 - No association with inflammation markers or disease activity
 - ↑ in AS after anti-TNF Tx
 - Trying to balance the new bone formation resulting from resolution of inflammation ("TNF brake hypothesis")
Ankylosing Spondylarthritis

- Synovial tissue
 - ↑ TNFα
 - ↑ Bone Morphogenetic Protein (BMP) -2 and -6
 - Thought responsible for bone formation
 - Also found in RA
Psoriatic Arthritis

- Synovial tissue
 - \(\uparrow \) RANKL/OPG
 - Synovial fibroblasts the main source of RANKL
- PBMCs
 - \(\uparrow \) circulating OCL precursors
 - Higher in PsA pts with erosive arthritis
 - Inhibited by OPG
SLE

- Only 4-6% display erosive changes in Rx
 - Histological
 - Mild synovial hyperplasia
 - Microvascular changes
 - Perivascular inflammation
 - One possible explanation
 - ↑ IFNa in SLE skews myelomonocyte precursors to mDC instead of OCL
 - IFNαr1^-/- mice: ↑ OCL precursors & osteopenia
 - Does not explain the osteopenia in SLE
Take home messages

- Bone remodelling is a complex procedure
 - RANK/RANKL/OPG – Osteoclastogenesis
 - Inflammatory cytokines
 - RA
 - Wnt system – Bone formation
 - Dkk-1 is the major player
 - AS